

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 1

PMT

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P71817A Publications Code 4PM1_01_2301_MS All the material in this publication is copyright © Pearson Education Ltd 2023 **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is given.
- Crossed out work should be marked **unless** the candidate has replaced it with an alternative response.

• Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

You must always check the working in the body of the script (and on any diagrams) irrespective of whether the final answer is correct or incorrect and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

If there is a choice of methods shown, then award the lowest mark, unless the answer on the answer line makes clear the method that has been used.

If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$ leading to $x =$
 $(ax^2 + bx + c) = (mx + p)(nx + q)$ where $|pq| = |c|$ and $|mn| = |a|$ leading to $x =$

2. <u>Formula</u>:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for *a*, *b* and *c*, leading to x = ...

3. <u>Completing the square:</u>

$$x^{2} + bx + c = 0$$
: $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$, $q \neq 0$ leading to $x = ...$

4. Use of calculators

Unless the question specifically states 'show' or 'prove' accept correct answers from no working. If an incorrect solution is given without any working do not award the Method mark.

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration:

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

PMT

Use of a formula:

Generally, the method mark is gained by **either**

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is <u>not</u> quoted, the method mark can be gained by implication

from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....")

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

Paper 1		
Question	Scheme	Marks
number		
1	a+9d+a+10d+a+11d or $3a+30d=129$ oe	
1	a + 18d + a + 19d + a + 20d = 237 or $3a + 57d = 237$ oe	M1 M1
	27d = 108 oe $(d = 4)$	M1
	$(a_1 =)3$	A1
		(4)
ALT	$a_{10} + a_{10} + d + a_{10} + 2d$ or $3a_{10} + 3d = 129$ oe $a_{10} + 9d + a_{10} + 10d + a_{10} + 11d = 237$ or $3a_{10} + 30d = 237$ oe	M1 M1
	27d = 108 oe $(d = 4)$	M1
	$(a_1 =)3$	A1
	·	Total 4 marks

International GCSE Further Pure Mathematics – Paper 1 Mark scheme

Mark	Additional Guidance	
M1	For fully correct use of $a + (n-1)d$ in an equation for the 10 th , 11 th and 12 th	
	terms OR the 19 th , 20 th and 21 st terms simplified or unsimplified oe	
M1	For fully correct use of $a + (n-1)d$ in an equation for the 10 th , 11 th and 12 th	
	terms AND the 19 th , 20 th and 21 st terms simplified or unsimplified oe	
M1	For an attempt to solve their equations simultaneously, allow one processing	
	error. Must eliminate one variable and arrive at a value for a or d.	
A1	For $(a / a_1 =)3$	
	Allow mixed use of a or a_1 throughout	

Question number	Scheme	Marks
2 a	(Gradient of $AB = $) $\frac{0-3}{4+5} \left(= -\frac{1}{3} \right)$	M1
	Gradient of the perpendicular = $-\frac{1}{"-\frac{1}{3}"}(=3)$	M1
	$y-5 = -\frac{1}{\frac{1}{3}}(x+1)$ or $y-5 = 3''(x+1)$ or $y = 3x+8$	M1
	3x - y + 8 = 0 or $-3x + y - 8 = 0$ oe	A1 (4)
b	(Equation of $AB =$) $y - 0 = "-\frac{1}{3}"(x-4)$ or $y = -\frac{1}{3}x + \frac{4}{3}$ oe	M1
	Solve $y-3x-8=0$ and $y-0=-\frac{1}{3}(x-4)$ oe simultaneously $0-\frac{10}{3}x+\frac{20}{3}$ or	M1
	x = -2 $y = 2$ or (-2, 2) *	$A1 \cos(3)$
	Alternative for final 2 marks (substitutes (- 2, 2) into each equation)) Line <i>l</i> is $3x - y + 8 = 0$	
	When $x = -2$ and $y = 2$, $-6 - 2 + 8 = 0 \Rightarrow D$ lies on l AB is $y = -\frac{1}{3}x - 4$	{M1}
	When $x = -2$ and $y = 2$, $-\frac{1}{3} - 2 - 4 = 2 = y \Rightarrow D$ lies on AB	
	So <i>l</i> and <i>AB</i> intersect at $-2, 2 *$	${A1 cso} {(3)}$
с	Midpoint of $AB = \left(\frac{-5+4}{2}, \frac{3(+0)}{2}\right) = \left(-\frac{1}{2}, \frac{3}{2}\right)$	B1 (M1 on ePen)
	\neq (-2,2) So not perpendicular bisector of <i>AB</i> *	B1 (A1 on ePen) cso
ALT	$BD = \sqrt{(4 - 2)^2 + (0 - 2)^2} \left(=\sqrt{40}\right) \text{ or } AD = \sqrt{(-5 - 2)^2 + (3 - 2)^2} \left(=\sqrt{10}\right)$	(2) M1
	$BD = \sqrt{40} (= 2\sqrt{10})$ and $AD = \sqrt{10}$ $BD \neq AD$ so not the perpendicular bisector	A1cso (2)

d
$$BD = \sqrt{(4--2)^2 + (0-2)^2} (= \sqrt{40})$$
 oe M1
 $CD = \sqrt{(-1--2)^2 + (5-2)^2} (= \sqrt{10})$ oe M1
 $(\tan \angle ABC =) \frac{\sqrt[n]{\sqrt{(-1--2)^2 + (5-2)^2 \pi}}}{\sqrt[n]{\sqrt{(4--6)^2 + (0-2)^2 \pi}}}$ or $\frac{\sqrt{10}}{\sqrt{40}}$
 $= \frac{1}{2}$ ALT 1 Uses cosine rule in triangle ABC
 $AB = \sqrt{(-5-4)^2 + (3-0)^2} (= \sqrt{90} = 3\sqrt{10})$ or $BC = \sqrt{(4--1)^2 + (0-5)^2} (= \sqrt{50} = 5\sqrt{2})$ M1
may also find expressions for $(AB)^2, (BC)^2$ or $(AC)^2$
 $AB = \sqrt{(-5-4)^2 + (3-0)^2} (= \sqrt{90} = 3\sqrt{10})$ and $BC = \sqrt{(4--1)^2 + (0-5)^2} (= \sqrt{50} = 5\sqrt{2})$ M1
may also find expressions for $(AB)^2, (BC)^2$ or $(AC)^2$
 $AB = \sqrt{(-5-4)^2 + (3-0)^2} (= \sqrt{90} = 3\sqrt{10})$ and $BC = \sqrt{(4--1)^2 + (0-5)^2} (= \sqrt{50} = 5\sqrt{2})$ M1
may also find expressions for $(AB)^2, (BC)^2$ and $(AC)^2$
 $(\cos ABC =) \frac{(\sqrt[n]{\sqrt{50}})^2 + (\sqrt[n]{\sqrt{90}})^2 - (\sqrt[n]{\sqrt{20}})^2}{2 \times \sqrt[n]{\sqrt{50}} \sqrt[n]{\sqrt{90}}} \left(= \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} \right)$ ddM1
 $(\tan ABC) = \frac{1}{2}$ A1
Total 13 marks

Part	Mark	Additional Guidance	
(a)	M1	For correctly finding the gradient of <i>AB</i> , need not be simplified.	
	M1	For finding the negative reciprocal of their gradient of AB, need not be simplified.	
	M1	For a fully correct method using their negative reciprocal to find the equation of the	
		straight line Allow use of their $-\frac{1}{2}$ which can be unsimplified or processed	
		straight life. Allow use of then $\frac{1}{2}$ which can be dissimplified of processed $\frac{1}{2}$	
		3	
		incorrectly, but must follow from a clear attempt to have found the negative	
		reciprocal of their gradient for AB. If $y = mx + c$ is used, there must be a fully	
		correct substitution and a fully correct rearrangement to find <i>c</i>	
	Al	For $3x - y + 8 = 0$ or $-3x + y - 8 = 0$ oe so long as integer coefficients and $= 0$.	
(b)	M1	For writing the equation of AB , the equation need not be simplified, but must be	
	M1	fully correct.	
	IVIII	For an altempt to solve their equations simultaneously, allow one processing error. Must eliminate one variable and arrive at a value for x or y	
	A1	For obtaining the required result no errors	
	cso*	Tor obtaining the required result, no errors.	
	ALT	Final 2 marks	
	M1	For writing the equation of AB, the equation need not be simplified, but must be	
		fully correct.	
	M1	For a fully correct substitution of $(-2, 2)$ into a correct equation for AB to show that	
		<i>D</i> lies on <i>AB</i> OR a fully correct substitution of $(-2, 2)$ into their equation for line <i>l</i>	
	A1	For a tully correct substitution of $(-2, 2)$ into a correct equation for <i>AB</i> to show that	
	cso*	D lies on l AND a fully correct substitution of $(-2, 2)$ into a correct equation for	
		In l to show that D lies on l . An appropriate (minimal) conclusion must also be written, this can be as simple as $\#$ or 'shown'. No errors.	
(c)	R1 (M1	For either coordinate of the midmoint correct	
(0)		For entier coordinate of the midpoint correct	
	ePen)		
	B1 (A1	For both coordinates correct and an appropriate (minimal) conclusion, which must	
	on	be correct, can be as simple as # or 'shown'.	
	ePen)		
	cso*		
ALT	M1	For a correct method to calculate AD or BD	
	A1	For correct values for <i>AD</i> and <i>BD</i> , accept decimals and a (minimal) conclusion, can	
	CSO*	be as simple as # or 'shown'.	
(d)	MI M1	For the correct method to calculate BD (May be seen in (c))	
	uulviii	For $(\tan \angle ABC =) \frac{\sqrt{(-12)^2 + (5-2)^2}}{\sqrt{(-12)^2 + (5-2)^2}}$ or $\frac{\sqrt{10}}{\sqrt{10}}$ allow their <i>BD</i> and <i>CD</i>	
		$\sqrt{(46)^2 + (0-2)^2}$ $\sqrt{40}$ and $\sqrt{20}$ and $\sqrt{20}$	
		Dependent on the previous 2 method marks.	
		For $(\tan \langle ABC \rangle - 1$	
	A1	$101 (\tan 2ABC) = \frac{1}{2}$	
If you	If you see a method using the gradient of <i>BC</i> and $tan (A - B)$ – PLEASE SEND TO REVIEW		

DOC_ID: P_0522000030316

Question number	Scheme	Marks
3 a	$\frac{a}{-2} = 4 \Longrightarrow a = -8$	M1 A1 (2)
b	$x = \frac{1}{2}$	B1 (1)
c (i)	$\left(\frac{3}{-"-8"},0\right)\left(=\left(\frac{3}{8},0\right)\right)$	B1 ft
c (ii)	(0,3)	B1 (2)
d	Asymptote drawn at $y = 4$. The asymptote must either be clearly labelled with its equation or pass through the y axis with 4 clearly labelled.	B1
	Asymptote with equation drawn at $x = \frac{1}{2}$ The asymptote must either be clearly labelled with its equation or pass through the <i>x</i> axis with $\frac{1}{2}$ labelled.	B1 ft
	Correct curve drawn with two branches	B1 ft
	" $\frac{3}{8}$ " and "3" labelled on x and y axes respectively	B1 ft (4)
	То	tal 9 marks

Part	Mark	Additional Guidance		
(a)	M1	For $\frac{a}{-2} = 4$		
	A1	For $a = -8$		
	Note: it	is acceptable if a candidate uses a suitably large value for x and deduces the correct		
	value for	r a. M1 A1		
(b)	B1	For $x = \frac{1}{2}$		
(c)(i)		For $\left(\frac{3}{-"-8"},0\right) \left(=\left(\frac{3}{8},0\right)\right)$ ft their value from (a). Allow omission of brackets.		
	B1 ft	This mark is awarded for the point at which you see $\left(\frac{3}{-\text{their }a},0\right)$		
		May be written $x =$		
(ii)	B1	For $(0,3)$. Allow omission of brackets. May be written $y =$		
If there	e is no lab	elling of (i) and (ii), it must be unambiguously indicated which coordinate crosses the crosses the r axis. If any doubt, do not award the marks		
(d) B1 For asymptote with equation drawn at $v=4$.		For asymptote with equation drawn at $v = 4$.		
		The line must be labelled with the equation or must clearly pass through the y-axis labelled as 4.		
		There must be at least one branch of the curve present, which must not cross or		
		bend back from the asymptote.		
	B1 ft	For asymptote with equation drawn at $x = \frac{1}{2}$, ft their answer from part b		
		The line must be labelled with the equation or must clearly pass through the x-axis		
		labelled as 0.5.		
		There must be at least one branch of the curve drawn, which must not cross or bend		
		back from the asymptote.		

	B1 ft	For correct curve drawn with two branches, in the correct quadrants, ft their answers from part a and b. The curve must be drawn in quadrants 1 and 3
	B1 ft	For $a = 1, a =$
		For a curve passing through " $-$ " and "3" labelled on x and y axes respectively, ft 8
		their answers from part a, b and c.
Note: a sketch	answers 1 for part	tor parts a, b and c cannot be awarded marks for correct values labelled on the d. For all parts where coordinates are requested, allow $x = and y =$
_		
		2
à	_	

Question	Scheme	Marks
number		
4 a Mark	$(f(1)=)1^3 + p \times 1^2 + q \times 1 + 6 = 0$ oe	M1
parts (i)	or	1111
and (ii)	$(f(-1) =)(-1)^3 + p \times (-1)^2 + q \times (-1) + 6 = 8$ oe	
logemen	p+q=-7 oe	A1
	p-q=3 oe	A1
	Solving simultaneously $2p = -4$ or $2q = -10$	M1
	p = -2 *	A1 cso
	and $q = -5$	B1
	1	(Al on
		ePen)
		cso
		(6)
b	$(f(x) = x^3 - 2x^2 - 5x + 6 = 0)$	
	$(x-1)(x^2 - x - 6) = 0$	M1
	[(x-1)](x+2)(x-3) = 0	M1
	x = 1, -2, 3	A1
		(3)
	Total	9 marks

$x-1 x^3 + px^2 + qx + x^3 + px^2 + qx + x^3 + px^2 + qx + q$.6
$\frac{1}{(D+I)\chi^2+9\chi}$	
$(p+1)x^2 - (p+1)x$	(p+1)X
(q+p+i)x +	- <u>6</u>
(9+p+1)x -19+	pt) 21 pt 1
6t 9t pt	
remainder 6+9	I + D + J = O
	p + q = -7
	<i>k</i>
M. 1 - 3 - 2	
$x^3 + x^2$	+6 ~2
$(p-1)x^2 + qx$	
$(p-1)x^2 + (p-1)x^2$)x (p-1)x
(q-p+1)x	+6
(q-p+1)x+(2-p+1) 2-p+1
679+1	5-11
(engider 6-0	1 + p - 1 = 8
	p - q = 3

Part	Mark	Additional Guidance	
(a)	M1	For a fully correct substitution of either 1 into $f(x) = 0$ OR -1 into $f(x) = 8$ as shown.	
		The bracketing for the substitution of -1 must be correct, but may be recovered	
		later. A correct equation can imply this mark.	
	A1	For a fully correct substitution of 1 into $f(x) = 0$ AND -1 into $f(x) = 8$ as shown. The	
		bracketing for the substitution of -1 must be correct, but may be recovered later. A	
		correct equation can imply this mark.	
	A1	For $p + q = -7$ and $p - q = 3$ oe	
		The equations do not need to be simplified.	
	Note, if	f students choose to do long division, to be comparable with the main scheme, this must	
	be fully	v correct and complete, to allow them to arrive at the correct equations to be awarded the	
	method	mark. See the example included. The accuracy marks can be then awarded as stated	
	above.	There is an example under the main mark scheme.	
	If in an	y doubt, please send to review.	
	M1	For an attempt to solve their equations simultaneously, allow one processing error.	
		Must eliminate one variable and arrive at a value for <i>p</i> or <i>q</i> .	
	AI	For $p = -2$	
	CS0 D1 (A1	5	
	DI (AI ON	q = -5	
	ePen)	Note this is an independent accuracy mark, allowing students to use the given value of	
		<i>p</i> to find <i>q</i> .	
(b)	M1	For $(x-1)(x^2 \pm Ax - 6) = 0$ $A \neq 0$	
		This mark can be awarded for sight of $x^2 \pm Ax - 6$ $A \neq 0$	
	M1	For $[(x-1)](x+2)(x-3) = 0$	
		For this mark, for the correct or ft their quadratic:	
		Allow any minimally acceptable attempt to solve the quadratic, by factorising,	
		completing the square or use of the quadratic formula – see general guidance, leading	
		to two values of x in addition to $x = 1$. It is not necessary to see = 0.	
	A1	For $x = 1, -2, 3$	
		If 3 three correct solutions appear with no working M1 M1 A1 as the question has not	
		stated show working or solve algebraically.	

Question number	Scheme	Marks
5 a	$\left(y=1+\frac{k}{2}x\Rightarrow\right)$ eg $kx^2-x\left(1+\frac{k}{2}x\right)+(k+1)x-1=0$ or eg $\frac{kx^2+(k+1)x-1}{x}=\frac{k}{2}x+1$	M1
	$kx^{2} - x - \frac{k}{2}x^{2} + kx + x - 1 = 0$ or $2kx^{2} + 2(k+1)x - 2 = kx^{2} + 2x$ oe	M1
	And an attempt to simplify must be made.	
	$kx^2 + 2kx - 2 = 0 \text{oe}$	A1
	$(b^2 - 4ac = 0 \Rightarrow)("2k")^2 - 4("k")("-2") = 0 \text{ or } (x+1)^2 = 1 + \frac{2}{k}$	M1
	$4k(k+2) = 0$ or $k+2 = 0$ or $1 + \frac{2}{k} = 0$	dM1
	k = -2	A1 (6)
ALT	Realises if the line intersects the curve only once, it is a tangent at point A – final 3 marks	
Final 3 marks	$y = \frac{kx^2 + (k+1)x - 1}{x} = \left(kx + k + 1 - \frac{1}{x}\right)$ and $\left(\frac{dy}{dx} = \right)\frac{k}{2}$	M1
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = k\left(+0\right) + \frac{1}{x^2} = \frac{k}{2} \Longrightarrow x^2 = -\frac{2}{k}$	
	$k\left(-\frac{2}{k}\right) + 2k\sqrt{-\frac{2}{k}} - 2 = 0 \Longrightarrow 2k\sqrt{-\frac{2}{k}} = 4 \Longrightarrow 4k^2\left(-\frac{2}{k}\right) = 16 \Longrightarrow -8k = 16$	dM1
	<i>k</i> = - 2	A1
b	When $k = -2 -2x^2 - 4x - 2 = 0$ or $(x+1)^2 = 1 + \frac{2}{-2}$	
	$\left(x+1\right)^2=0$	M1
	$x = -1 \Rightarrow y = 2$ So $(-1, 2)$	A1
		(2)
	Total 8	marks

Part	Mark	Additional Guidance	
(a)	M1	For correctly substituting $\dots + k$ winto $h^2 \dots + (k+1) \dots + 1$	
		For correctly substituting $y = 1 + -x$ into $kx - xy + (k+1)x = 1$	
	M1	For a complete expansion of $x\left(1+\frac{k}{-x}\right)$ and $(k+1)x$. Allow one error in the expansion.	
		For multiplying the equation throughout by $2x$ or $-2x$, x or $-x$ to eliminate any algebraic denominators allow one processing error	
		denominators, and w one processing error.	
		There must be an attempt to simplify follow either of these steps.	
		If any other manipulation is seen, full marks can be awarded if the steps lead to a correct	
		equation or a three term quadratic with one processing error made. If there is relevant	
		work, not leading to either of these, please send to review.	
	A1	For a correct three term quadratic. oe	
	M1	For clear and correct use of $b^2 - 4ac = 0$ or a full and correct completing the square	
		process, using their expressions for a, b and c, $a,b,c \neq 0$	
	dM1		
	ulvii	For factorising or any attempt to solve their quadratic in k, or setting their $1 + \frac{2}{k} = 0$	
		See general guidance for acceptable attempt to solve a quadratic.	
		For the case of a 2TQ with terms in k and k^2 (which a fully correct solution delivers), we	
		need to see a correct factorisation in the case of this mark or, as the candidate is told k is no	
		zero, they may also correctly divide throughout by k.	
		Dependent on the previous method mark.	
		Allow this mark to be implied if k is correct. Otherwise, the method must be shown to gain	
		this mark.	
	A1	k = -2, must dismiss $k = 0$, if found.	
ALT	States	and use the gradient of C is $\frac{k}{2}$.	
	M1	As main scheme.	
	M1	As main scheme.	
	A1	As main scheme.	
	M1	Differentiates C and puts the gradient $-\frac{k}{k}$ to get an equation of the form	
		$\frac{1}{2}$	
		$mk + \frac{n}{m} = \frac{k}{m}$ $m \neq 0$ (doesn't need to be simplified) but must lead to an expression of	
		$x^2 = 2$	
		the form $x^2 = -\frac{l}{l}$ $l \neq 0$	
	dM1	κ	
	UIVII	expression of the form $-nk-a$ or $nk-a$ $n > 0$ $k > 0$	
		expression of the form $-p_k - q$ of $p_kq p > 0, k > 0$	
	Al	k = -2 (must be the only solution given).	
(D)	IVI I	For correct substitution of their value of k into their 3 term quadratic from part a and a minimally acceptable attempt to solve for k See correct substitution	
	A 1	minimary acceptable attempt to solve for x. See general guidance.	
	AI	For $(-1, 2)$ or $x = -1$ and $y = 2$	

Question number	Scheme	Marks
6 a	$p=2$ $q=\frac{3}{8}$	B1 B1 (2)
b c	$(2)\left[1 + \frac{1}{3}\left(\frac{3}{8}x\right) + \frac{\frac{1}{3}\left(-\frac{2}{3}\right)}{2!}\left(\frac{3}{8}x\right)^{2}\right] = 2 + \frac{1}{4}x - \frac{1}{32}x^{2}$ $\left(\frac{\sqrt[3]{9}}{\sqrt[3]{8}+1} \Rightarrow x = \frac{1}{3}\right)$	(2) M1 A1ft A1 (3)
	So "2"+ " $\frac{1}{4}$ "×" $\frac{1}{3}$ "-" $\frac{1}{32}$ "×(" $\frac{1}{3}$ ") ² (= $\frac{576+24-1}{288}$)= $\frac{599}{288}$ *	M1 A1 cso (2)
	Tota	l 7 marks

Part	Mark	Additional Guidance
(a)	B1	For $p = 2$ or $q = \frac{3}{8}$ condone $8^{\frac{1}{3}}$
	B1	For $p=2$ and $q=\frac{3}{8}$ condone $8^{\frac{1}{3}}$
(b)	M1	For an attempt to expand $(1 + qx)^{\frac{1}{3}}$ with their value of q up to the term in x^2 It is not necessary to see p at this stage. The definition of an attempt is as follows: • The first term must be 1 • The next term must be correct for their value of q • The powers of qx must be correct eg $(qx)^2$ • The denominators must be correct Simplification not required.
		marking. Ignore any terms with powers higher than 2.
	A1ft	For both algebraic terms fully correct and unsimplified in the expansion of $(1+qx)^{\frac{1}{3}}$ for their value of q. It is not necessary to see p at this point. Ignore any terms with powers higher than 2.
	A1	For all 3 terms correct, all simplified. Ignore any terms with powers higher than 2
If ther	e are any	other methods used – send this to review please.
(c)	M1	For correct substitution of $x = \frac{1}{3}$ into their expansion, which must have at least 2
	Alcso*	Contains the given result x
	AICSU	Obtains the given result

Question number					Sch	eme				Marks
7 a	-6	-5	-4	-3	-2	-1	0			B2
, u	4	3.59	3.26	3	2.79	2.63	2.5			(2)
b	Points p	lotted w	ithin a h	alf squa	re					B1 ft
	Joined v	with a sm	nooth cu	rve						BI ft
с	$(\log_2(2$	$(x+2)^{3} +$	-x + 3 =	0)						(2)
	$3\log_2(2$	(2x+2) =	-x-3	or	\log_2	(2x+2)	$=\frac{-x}{3}-$	1		M1
	$\frac{\log_{0.5}(2)}{\log_{10}}$	$\frac{2x+2}{2x+2} =$	$-\frac{x}{3}-1$	or 2x	$x + 2 = 2^{-1}$	$\frac{x}{3}^{-1}$ or	$\frac{1}{2x+2}$	$x = 2^{\frac{x}{3}+1}$		M1
	$\left(\log_{0.5}($	(2x+2) =	$=\frac{x}{3}+1=$	$\Rightarrow) 2x +$	-2 = 0.5	$\frac{x}{3}+1$				M1
	$2x + 4 = 0.5^{\left(\frac{x}{3}+1\right)} + 2$						A1			
	y = 2x + 4 drawn							M1		
	Intersect	t at $x = -$	-0.8/-0	.7						A1
										(6)
ALT	$3\log_2(2$	2x+2)=	-x-3	or	\log_2	(2x+2)	$=\frac{-x}{3}-$	1		M1
	$\frac{\log_{0.5}(2)}{\log_{10}}$	$\frac{2x+2}{2x+2} =$	$=-\frac{x}{3}-1\Big($	$\Rightarrow \log_{0.}$	$_{5}(2x+2)$	$\left(x\right) = \frac{x}{3} + \frac{x}{3}$	1)			M1
	$\left(y-2=\right)$	$= 0.5^{\left(\frac{x}{3}+1\right)}$	$\Rightarrow] \log_{0}$	$y_{0.5}(y-2)$	$=\frac{x}{3}+1$	$\Rightarrow \log_{0.2}$	$_{5}(y-2)$	$=\log_{0.5}(2x+2)$		M1
	y - 2 = 2	2x + 2								A1
	As main	scheme	;							M1 A1
									Total 1	0 marks

Part	Mark	Additional Guidance
(a)	B2	For all 3 values in the table correct to 2 d.p. Allow 3.0 or 3.00 for "3"
		(B1 for 2 values)
(b)	B1 ft	For all of the points plotted within half a square, allow use of their values.
		Points must be checked carefully, including using the zoom tool on ePen if
		necessary.
	B1 ft	For all of their points joined with a smooth curve. The curve must pass through
		each of their points to within half a square.
		Be cautious to not award this mark if straight lines are drawn between the points
	2.54	plotted.
(c)	M1	For use of $\log_a x^{\kappa} = k \log_a x$ and an attempt to rearrange.
		Accept an equation of the form
		$\pm 2\log (2x+2) = \pm x \pm 2$ or $\pm \log (2x+2) = \pm x \pm 1$
	264	$\pm 3 \log_2(2x+2) = \pm x \pm 3 \text{or} \pm \log_2(2x+2) = \frac{1}{3} \pm 1$
	MI	For correctly dividing by 3 (if not already done) and correct use of
		$\log_b a = \frac{\log_{0.5}(a)}{\log_{0.5}(b)}$ with their equation to get an expression of the form
		$\log (2r+2) = r$
		$\frac{\log_{0.5}(2x+2)}{\log_{0.5}(2x+2)} = \pm \frac{x}{2} \pm 1$ or
		$\log_{0.5} 2$ 5
		For correctly dividing by 3 (if not done) and correctly converting their equation
		to exponential form get an equation of the form $2x + 2 = 2^{\frac{\pm -\pm 1}{3}}$ or $\frac{1}{2x+2} = 2^{\frac{\pm -\pm 1}{3}}$
	M1	For reaching an equation of the form $2x + 2 = 0.5^{\pm \frac{x}{3}}$
	A 1	1 of reaching an equation of the form $2x + 2 = 0.5$
	Л	For $2x + 4 = 0.5^{\left(\frac{-1}{3}+1\right)} + 2$
	M1	For $y=2x+4$ drawn. Correct line drawn can imply any of the 4 previous marks.
		Allow any line of $y = 2x + c$ to gain this mark.
		If the candidate draws any line where <i>c</i> is other than 4, they must have
		gained the previous 3 method marks.
	A1	For $x = -0.8 / -0.7$
ALT	M1	For use of $\log_a x^k = k \log_a x$ and an attempt to rearrange.
		Accept an equation of the form
		$+21$ (2 + 2) + +2 (2 + 2) $\pm x$ +1
		$\pm 3\log_2(2x+2) = \pm x \pm 3$ or $\pm \log_2(2x+2) = -\frac{1}{3} \pm 1$
	M1	For correctly dividing by 3 (if not already done) and correct use of
		$\log_{a} = \log_{0.5}(a)$ with their equation to get an expression of the form
		$\log_b u = \frac{1}{\log_{0.5}(b)}$ with their equation to get an expression of the form
		$\log_{0.5}(2x+2)$ x
		$\frac{20.3(1-1)}{\log 10^2} = \pm \frac{1}{3} \pm 1$
	M1	For an attempt to rearrange and converting to log form to reach
		$\log_{0.5}(y \pm 2) = \pm - \pm 1 \Longrightarrow \log_{0.5}(y \pm 2) = \pm \log_{0.5}(2x + 2)$
	A1	For the correct equation show.
	M1	As main scheme.
	A1	

Question	Scheme	Marks
number		
8 a	(Area) = $2xy + \frac{1}{2}x^2\left(\frac{1}{2}\right)\left(=2xy + \frac{1}{4}x^2 = 50\right)$	M1
	So $y = \frac{50 - \frac{1}{4}x^2}{2x} \left(= \frac{25}{x} - \frac{1}{8}x \right)$	dM1
	$P = 2x + 4y + \frac{1}{2}x = \frac{5}{2}x + 4y$	M1
	$=\frac{5}{2}x+4\left(\frac{25}{x}-\frac{1}{8}x\right) \Longrightarrow P=2x+\frac{100}{x} *$	M1 A1 cso (5)
b	$\left(\frac{\mathrm{d}P}{\mathrm{d}x}\right) = 2 - \frac{100}{x^2}$	M1 A1
	$\left(\frac{\mathrm{d}P}{\mathrm{d}x}=0\Rightarrow\right)2-\frac{100}{x^2}=0\Rightarrow x^2=50\Rightarrow x=5\sqrt{2} \text{ oe}$	M1 A1
	$\frac{d^2 P}{dx^2} = \frac{200}{x^3} \text{ When } x = 5\sqrt{2} \qquad \frac{d^2 P}{dx^2} = \frac{2}{5}\sqrt{2} (= 0.565) > 0$ therefore minimum	M1 A1 (6)
с	$P = 2\left(5\sqrt{2}\right) + \frac{100}{5\sqrt{2}} = 20\sqrt{2}$	M1 A1 (2)
	Tota	l 13 marks

Part	Mark	Additional Guidance
(a)	M1	For writing an expression (may not be simplified) for the area in terms of x and y.
		Allow any expression of the form $xy + xy + ax^2$ or where $a > 0$
		This mark can be implied by an equation for A with the required
		$r_1 + r_2 + ar^2$ of where $a > 0$
	dM1	For placing their expression for area $= 50$ and correctly rearranging to make y the
	uwii	subject. The expression for v does not need to be simplified
	M1	For correctly writing an equation for perimeter in terms of x and v (may not be
		simplified).
		There must be a $P =$, though this may be seen later in their work. As long as $P =$
		appears by the end of the work, this mark can be awarded.
		Perimeter = instead of P = is acceptable for this mark
	M1	For correct substitution of their expression for y into their expression for P or the
		Perimeter to reach an expression for P which must be in terms of x only.
		Obtains the given result with no errors
	A1*cso	Perimeter = instead of P = is NOT acceptable for this mark
For t	his questic	on, if we are confident any second solution provided is a re-start and the work
the ca	indidate w	vishes us to consider, this is the work can be marked.
(b)	M1	For an attempt to differentiate the given expression for <i>P</i> wrt <i>x</i>
		It is not necessary to see $\frac{dP}{dP}$
		It is not necessary to see $\frac{dx}{dx}$
		A multiple between the form $2 \pm b$ by 0 m
		Award this mark for any expression of the form $2\pm \frac{1}{x^2}$, $b \neq 0$ de
	A 1	$E_{eff} = \frac{100}{2}$
	AI	FOR $2 - \frac{1}{x^2}$ de
		For placing their expression for $\frac{dP}{dP} = 0$ which must have a term in x^2 a correct
	M1	For placing their expression for $\frac{dx}{dx} = 0$ which must have a term in x, a correct
		rearrangement to solve the equation formed and an attempt to find a value for x
	A1	For $x = 5\sqrt{2}$ oe ignore $x = -5\sqrt{2}$
	M1	For $\frac{d^2 P}{d^2 - \frac{1}{c}} c \neq 0$
	1411	$\frac{1}{dx^2} - \frac{1}{x^3} \frac{1}{x^2} + \frac{1}{x^3} \frac{1}{x^2} + \frac{1}{x^3} \frac{1}{x^3} + \frac{1}{x^3} +$
	A1	For substituting in a correct value for <i>x</i> , evaluating correctly, stating > 0 and
		drawing a conclusion. This can be as simple as # or shown.
		Students may also argue that the second derivative has to be positive as x is positive.
		This must be a convincing argument that since x is positive the derivative is positive and then a valid minimal conclusion
		The net award this mark if a negative value of r is used and it is not discounted at
		some point.
	ALT	Final 2 marks
	M1	For substitution of valid values for x either side of their value of x found for the
		minimum value into $\frac{dP}{dP} = 2 + \frac{b}{dP} = b \neq 0$
		$\frac{dx}{dx} = \frac{1}{x^2}, b \neq 0$
	A1	For fully correct substitution of their values for x into a correct expression for a first
		derivative, correctly evaluating or arguing the sign of the derivative and a
		conclusion drawn. Do not award this mark if a negative value of x is used and it is
		not discounted at some point.
(c)	M1	For substitution of their value for $x = 5\sqrt{2}$ or into the given expression for P
	A 1	$r = 20\sqrt{2}$
	AI	For ZUVZ

Question number	Scheme	Marks		
9	$(e^{2y} - x + 2 = 0 \Rightarrow)e^{2y} = x - 2 \Rightarrow 2y = \ln(x - 2)$ or $y = \frac{1}{2}\ln(x - 2)$	M1		
	So $\ln(x+3) - \ln(x-2) = 1$ oe	M1		
	$\ln\left(\frac{x+3}{x-2}\right) = 1$	M1		
	$\frac{x+3}{x-2} = e$	M1		
	$x+3 = xe - 2e \Longrightarrow 3 + 2e = xe - x$ $3+2e = x(e-1) \Longrightarrow x = \frac{3+2e}{2} = 4.91$	ddddM1 A1		
	$v = \frac{1}{2} \ln \left(\frac{3+2e}{-2} - 2 \right) = 0.53$	M1 A1		
ALT 1	$e^{2y} + 2 = x \Rightarrow \ln(e^{2y} + 2 + 3) - 2y - 1 = 0$	(8) M1		
	$\ln(e^{2y} + 5) = 2v + 1 \implies e^{2y+1} = e^{2y} + 5$	M1		
	$e^{2y} = e^{2y} + 5$	M1		
	$e^{2y}(e-1) = 5$	M1		
	$2y = \ln\left(\frac{5}{e-1}\right) \Rightarrow y = \frac{1}{2}\ln\left(\frac{5}{e-1}\right) = 0.53$	ddddM1 A1		
	$x = e^{\ln\left(\frac{5}{e-1}\right)} + 2$ or $x = \left(\frac{5}{e-1}\right) + 2 = 4.91$	M1 A1 (8)		
ALT 2	$\ln(x+3) = 2y+1 \Longrightarrow x = e^{2y+1} - 3$	M1		
	$e^{2y} - (e^{2y+1} - 3) + 2 = 0$	M1		
	$e^{2y} - e^{2y+1} + 5 = 0 \Longrightarrow e^{2y} - e \cdot e^{2y} + 5 = 0$ (1-c) $e^{2y} = -5$	M1 M1		
	$2y = \ln\left(\frac{-5}{1-2}\right) \Longrightarrow y = \frac{1}{2}\ln\left(\frac{-5}{1-2}\right) = 0.53$	ddddM1		
	Final 2 marks as ALT1	M1 A1		
	$2y = \ln(x+3) - 1$ $e^{2y} = e^{\ln(x+3) - 1}$	M1 M1		
	$e^{2y} = \frac{x+3}{2}$ oe	M1		
ALT 3	$x - 2 = \frac{x + 3}{2} \text{oe}$	M1		
	e 3+2e	111		
	$x = \frac{1}{e - 1} = 4.91$	dddM1		
There are	Final 2 marks as main scheme potentially a large number of approaches to this question. Use the following general p	orinciples:		
Although	Although the first 4 M marks are not dependent on each other, there must be sufficient work completed in			
carefully a	t the relevant Practice item in OLS. Award full marks for correct values of x and y . If	in any		
doubt or d	ifferent methods are used not leading to correct answers, you <u>MUST</u> send this to revi Tot	ew please.		

Mark	Additional Guidance
M1	For correctly rearranging and taking logs to obtain $2y = \ln(x-2)$ or $y = \frac{1}{2}\ln(x-2)$
M1	For correct substitution of their expression for <i>y</i> or 2 <i>y</i> into $\ln(x+3)-2y-1=0$
M1	For correct use of $\log_a \frac{x}{y} = \log_a x - \log_a y$ with their equation.
M1	For correctly converting their log equation to exponential form.
ddddM1	For correctly multiplying throughout to eliminate any denominators and collecting <i>x</i> terms on one side of the equation and making <i>x</i> subject. Dependent on all previous method marks having been awarded and the rearrangement of their equation must be fully correct.
A1	For $x = 4.91$ or better e.g. exact form (Calc gives: 4.90988) accept any answer which rounds to 4.91
M1	For correct substitution of their value for x into a correct equation leading to a value for y
A1	For $y=0.53$ Accept any answer which rounds 0.53 (calculator gives: 0.5340565)
ALT 1	
M1	Correctly rearranging to make x the subject and correctly substituting into $\ln(x+3)-2y-1=0$
M1	A correct rearrangement of their equation in y to give an equation which then allows them to correctly convert their log equation to exponential form.
M1	Correctly applying the multiplication law for powers
M1	Correctly rearranging their equation and correctly factorising e^{2y}
ddddM1	For dividing by $e-1$ and converting to log form to make y the subject. Dependent on all previous method marks having been awarded and the rearrangement of their equation must be fully correct.
A1	For $y=0.53$ or better e.g. exact form (Calc gives: 0.5340565), accept any answer which rounds
	to 0.53
M1	For correct substitution of y into a correct equation leading to a value for x
A1	For $x = 4.91$
	Accept any answer which rounds to 4.91 (Calc gives: 4.90988)
ALIZ M1	Correctly rearranges and converts to exponential form to obtain $x = x^{2\nu+1} = 2$
M1	A correct substitution of their r into e^{2y} $r + 2 = 0$
M1	Correct use of the multiplication law for powers
M1	Correct rearrangement of their equation and factorisation of e^{2y}
ddddM1	For dividing by $e - 1$ and converting to log form to make v the subject. Dependent on all previous
	method marks having been awarded and the rearrangement of their equation must be fully correct.
A1	For $y=0.53$ or better e.g. exact form (Calc gives: 0.5340565), accept any answer which rounds to 0.53
Final 2	As ALT1
marks	
ALT 3	
MI	Correctly rearranges to make 2y the subject $2y = \ln(x+3) - 1$
MI M1	Correctly raises each side to be a power of e $e^{2y} = e^{\ln(x+3)-1}$
NI I	Correct use of the multiplication rule for powers and simplification to give $e^{2y} = \frac{x+3}{e}$
M1	Correct substitution of their expression for e^{2y} (usually equating the two equations)
ddddM1	For correctly multiplying throughout to eliminate any denominators and collecting x terms on one side of the equation and making x subject. Dependent on all previous method marks having been
A 1	awarded and the rearrangement of their equation must be fully correct. For $x = 4.91$ or better e.g. exact form (Calc gives: 4.90988) accept any answer which rounds
	to 4.91
Final 2 marks	As main scheme

PMT

Question number	Scheme	Marks
10 a	$(y-1)+y^2=11 \Rightarrow y^2+y-12=0 \text{ or } x^2+x^2+1^2=11 \Rightarrow x^4+3x^2-10=0$	M1
	$(y-3)(y+4)=0$ or $x^{2}+5$ $x^{2}-2=0$	M1
	$(y=3 \ y=-4) \qquad \Rightarrow x^2=2 \qquad x^2=-5$	M1
	For stating the <i>x</i> coordinate of <i>A</i> is $-\sqrt{2}$ and the <i>x</i> coordinate of <i>B</i> is $\sqrt{2}$	A1 (4)
b	$\pi \int_{-\sqrt{2}^{n}}^{\sqrt{2}^{n}} (11-x^2) - (x^2+1)^2 dx$ or $\pi \int_{-\sqrt{2}^{n}}^{\sqrt{2}^{n}} (x^2+1)^2 - (11-x^2) dx$	M1
	$\pi \int_{-\sqrt{2}}^{\sqrt{2}} (-x^4 - 3x^2 + 10) \mathrm{d}x''$	Alft
	$(\pi) \left[-\frac{x^5}{5} - x^3 + 10x \right]_{(-\sqrt{2})}^{(\sqrt{2})}$	M1
	$\left(\pi\right)\left[\left(-\frac{\left("\sqrt{2}"\right)^{5}}{5}-\left("\sqrt{2}"\right)^{3}+10"\sqrt{2}"\right)-\left(-\frac{\left("-\sqrt{2}"\right)^{5}}{5}-\left("-\sqrt{2}"\right)^{3}-10"\sqrt{2}"\right)\right]=63.98$	M1 A1 (5)
ALT	$\int \sqrt{2} \left[\sqrt{2} - \sqrt{2} \right] \left[\sqrt{2} + 1 \right]^2 + 1 = \int \sqrt{2} \left[\sqrt{2} +$	(M1)
	$\pi \int_{\frac{x}{\sqrt{2}n}}^{\frac{x}{\sqrt{2}n}} (11-x^2) dx - \pi \int_{\frac{x}{\sqrt{2}n}}^{\frac{x}{\sqrt{2}n}} (x^2+1)^2 dx \text{ or } \pi \int_{\frac{x}{\sqrt{2}n}}^{\frac{x}{\sqrt{2}n}} (x^2+1)^2 dx - \pi \int_{\frac{x}{\sqrt{2}n}}^{\frac{x}{\sqrt{2}n}} (11-x^2) dx$	{M1}}
	$\pi \int_{-\sqrt{2}}^{\sqrt{2}} (11 - x^2) dx - \pi \int_{-\sqrt{2}}^{\sqrt{2}} (x^4 + 2x^2 + 1) dx$	{A1ft}
	$(\pi) \left[11x - \frac{x^3}{3} \right]_{(-\sqrt{2})}^{(\sqrt{2})} - (\pi) \left[\frac{x^5}{5} + \frac{2x^3}{3} + x \right]_{(-\sqrt{2})}^{(\sqrt{2})}$	{M1}
	$(\pi) \left[\left(11("\sqrt{2}") - \frac{("\sqrt{2}")^3}{3} \right) - \left(11("-\sqrt{2}") - \frac{("-\sqrt{2}")^3}{3} \right) \right]$	
	$-\left(\pi\right)\left[\left(\frac{("\sqrt{2}")^{5}}{5} + \frac{2("\sqrt{2}")^{3}}{3} + "\sqrt{2}"\right) - \left(\frac{("-\sqrt{2}")^{5}}{5} + \frac{2("-\sqrt{2}")^{3}}{3}" - \sqrt{2}"\right)\right]$	{M1} {A1}
	= 63.98	(5)
	Total	9 marks
Note: the	candidate may also set up the integral as	
$\int \sqrt{2} d$	$1 - 2 + (2 - 1)^2 + 2 - \int_0^0 (1 - 2) (2 - 1)^2 + 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $	

$$2 \times \pi \int_{0}^{\sqrt{2}} (11 - x^{2}) - (x^{2} + 1)^{2} dx \quad \text{or} \quad 2 \times \pi \int_{-\sqrt{2}}^{\sqrt{2}} (11 - x^{2}) - (x^{2} + 1)^{2} dx \text{ or}$$
$$2 \times \left(\pi \int_{0}^{\sqrt{2}} (11 - x^{2}) dx - \pi \int_{0}^{\sqrt{2}} (x^{2} + 1)^{2} dx\right) \text{ or } \quad 2 \times \left(\pi \int_{-\sqrt{2}}^{0} (11 - x^{2}) dx - \pi \int_{-\sqrt{2}}^{0} (x^{2} + 1)^{2} dx\right)$$

If it is clear that the integral(s) being used at any point needs to be multiplied by 2, all marks can be awarded, follow the same principles in the main or ALT schemes if the multiply by 2 is seen anywhere in the solution.

If multiply by 2 is nowhere present or implied by a final answer, the maximum mark is M0 A0 M1 M1 A0

Part	Mark	Additional Guidance
(a)	M1	$\mathbf{r}^2 = \mathbf{v} - 1$
		For correctly rearranging to get $x = y$ and correctly substituting to get an
		equation of the form $ay^2 + by + c = 0$ $a, b, c \neq 0$ or
		For correctly substituting $y = x^2 + 1$, an attempt to expand $(x^2 + 1)^2$ and attaining
		an equation of the form $dx^4 + ex^2 + f = 0$ $d, e, f \neq 0$
	M1	For a complete attempt to solve either $av^2 + bv + c$ or $dx^4 + ex^2 + f$ by any valid
		method $-$ see general guidance for definition of minimally acceptable attempt
	M1	For correctly solving their quadratic equation in v or quartic equation in x and for
		obtaining a value(s) for x^2 or x.
		Award this mark if the candidate does not state or dismisses a solution where x^2 is
		negative.
	A1	For stating the x coordinate of A is $-\sqrt{2}$ and the x coordinate of B is $\sqrt{2}$
		Decimal equivalent allowed.
(b)	M1	For $\pi \int_{-\infty}^{\sqrt{2}\pi} (11 - x^2) (x^2 + 1)^2 dx$ or $\pi \int_{-\infty}^{\sqrt{2}\pi} (x^2 + 1)^2 - (11 - x^2) dx$
		$\int_{-\sqrt{2}}^{1} (1 - x) - (x + 1) dx dx \int_{-\sqrt{2}}^{1} (1 - x) dx dx \int_{-\sqrt{2}}^{1} (1 - x) dx dx dx$
	A 1.64	Allow use of their limits from part a. $\sqrt{2}$
	AIIt	For expanding the bracket and simplifying to give $\pi \int_{-\sqrt{2}}^{\sqrt{2}} (-x^4 - 3x^2 + 10) dx$
		The ft is only for use of their limits from part a.
	M1	For correct integration of their expressions. There must be at least 3 terms overall
		and there must be a term in x^4 or y^4 . It is not necessary for π or limits to be present
		for this mark.
	MI	For correct substitution of their limits seen into their changed expression. Each of
		Allow a fully correct final answer to imply this mark
		Brackets must be correct but can be recovered later.
	A1	For awrt 63.98 (Calc: 63.9775) If a negative value is found and changed at the
		end to a positive value, this final A mark cannot be awarded.
ALT	M1	For $\pi \int_{x}^{\sqrt{2}} (11-x^2) dx - \pi \int_{x}^{\sqrt{2}} (x^2+1)^2 dx$ or
		ייעבייי גערייעביי רעביי גערייעביי רעביי גערייעביי
		$\pi \int_{x-\sqrt{2}}^{x} (x^2+1)^2 dx - \pi \int_{x-\sqrt{2}}^{x} (11-x^2) dx$ Allow use of their limits from part a.
	A1ft	For expanding the bracket and simplifying
		$\pi \int_{-\pi}^{\pi} (11-x^2) dx - \pi \int_{-\pi}^{\pi} (x^4 + 2x^2 + 1) dx$
		$J'' = \sqrt{2}$ The ft is only for use of their limits from part a
	M1	For correct integration of their expressions. There must be at least 3 terms overall
		and there must be a term in x^4 or y^4 . It is not necessary for π or limits to be present
		for this mark.
	M1	For correct substitution of their limits seen into their changed expression. Each of
		the limits needs to be substituted into each expression correctly at least once.
		Allow a fully correct final answer, with correct integration shown, to imply this
	A 1	mark. Brackets must be correct but can be recovered later.
	AI	FOR aWR 05.98 (Calc: 05.97/5) If a negative value is found and changed at the
	Al	For awrt 63.98 (Calc: 63.9775) If a negative value is found and changed at the end to a positive value, this final A mark cannot be awarded

Question number	Scheme	Marks
11 a i	$\left(\overrightarrow{AN}=\right)\overrightarrow{AO}+\overrightarrow{ON}$ or $\left(\overrightarrow{AN}=\right)\overrightarrow{AO}+\frac{3}{4}\overrightarrow{OB}=-\mathbf{a}+\frac{3}{4}\mathbf{b}$	M1 A1
ii	$\left(\overrightarrow{BM} = \overrightarrow{BO} + \overrightarrow{OM} = \right) - \mathbf{b} + \frac{1}{2}\mathbf{a}$	B1 (A1 on ePen) (3)
b	$\left(\overrightarrow{AX} = \lambda \left(\pm \left(\text{their } \overrightarrow{AN} \right) \right) \right) = \lambda \left(\pm "-\mathbf{a} + \frac{3}{4}\mathbf{b}" \right)$	B1 ft
	$\left(\overrightarrow{AX} = \overrightarrow{AM} + \mu \left(\pm \left(\operatorname{their} \overrightarrow{MB}\right)\right) = -\frac{1}{2}\mathbf{a} + \mu \left(\pm -\frac{1}{2}\mathbf{a} + \mathbf{b}''\right)$	M1
	Equating components gives $-\lambda = -\frac{1}{2} - \frac{1}{2}\mu$	M1
	and $\frac{3}{4}\lambda = \mu$	M1
	$-\lambda = -\frac{1}{2} - \frac{1}{2} \left(\frac{3}{4} \lambda \right) \Longrightarrow \lambda = \frac{4}{5} \text{ or } \mu = \frac{3}{5}$	ddM1 A1
ALT	So $AX: XN = 4:1$	A1 (7)
	$\left(\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{BN} + \lambda \left(\pm \left(\operatorname{their} \overrightarrow{AN}\right)\right)\right) = \mathbf{b} - \mathbf{a} - \frac{1}{4}\mathbf{b} + \lambda \left(\pm - \mathbf{a} + \frac{3}{4}\mathbf{b}^{"}\right)$	B1ft
	$\left(\overrightarrow{AX} = \overrightarrow{AM} + \mu \left(\pm \left(\operatorname{their} \overrightarrow{MB}\right)\right) = -\frac{1}{2}\mathbf{a} + \mu \left(\pm -\frac{1}{2}\mathbf{a} + \mathbf{b}''\right)$	M1
	Equating components gives $-\frac{1}{2} - \frac{1}{2}\mu = -1 + \lambda$	M1
	and $\mu = \frac{3}{4} - \frac{3}{4}\lambda$	M1
	$\mu = \frac{3}{4} - \frac{3}{4} \left(\frac{1}{2} - \frac{1}{2} \mu \right) \Longrightarrow \lambda = \frac{1}{5} \text{ or } \mu = \frac{3}{5}$	ddM1 A1
	So $AX: XN = 4:1$	A1 (7)

General principles for marking part b

B1 ft states a valid vector, with a parameter, that could be used in a solution to find the ratio required. M1 states a second valid vector path, with a second distinct parameter that could be used to find the ratio required. **This must be a distinct route, different to that used already, not travelling along the same line.** M1 This mark is obtained by correctly equating their components for **a.** They must have two relevant vectors, along two distinct paths and two distinct parameters. These do not need to be labelled λ and μ M1 This mark is obtained by correctly equating their components for **b.** They must have two relevant vectors, along two distinct paths and two distinct parameters. These do not need to be labelled λ and μ ddM1 This mark is obtained by correctly equating their components for **b.** They must have two relevant vectors, along two distinct paths and two distinct parameters. These do not need to be labelled λ and μ ddM1 For an attempt to solve their simultaneous equations. There can be errors, but it must be clear they are solving simultaneous equations to arrive at a value for λ Or μ or their parameters.

Dependent on both previous method marks.

A1 correct value for one of their parameters

A1 correct ratio

Part	Mark	Additional Guidance
(a)	M1	For a correct vector path stated, a fully correct answer implies this mark.
(i)	A1	For $-\mathbf{a} + \frac{3}{4}\mathbf{b}$
(ii)	B1 (A1 ePen)	For $-\mathbf{b} + \frac{1}{2}\mathbf{a}$
(b)	B1 ft	For $\overrightarrow{AX} = \lambda \pm \text{their } \overrightarrow{AN}$ written in terms of vectors a and b
		$\left(\overrightarrow{AX} = \lambda \left(\pm \left(-\mathbf{a} + \frac{3}{4}\mathbf{b}^{*} \right) \right)$ This may be seen embedded in working
	M1	For e.g. $AY = AM + \mu + their MB$ written in terms of vectors a and b
		$\left(\overrightarrow{AX} = \right) - \frac{1}{2}\mathbf{a} + \mu \left(\pm \left(\left(-\frac{1}{2}\mathbf{a} + \mathbf{b}\right)\right)\right)$ This may be seen embedded in working.
		This must be a distinct route, different to that used already, not travelling along the
	M1	For $-\lambda = -\frac{1}{2} - \frac{1}{2} - \frac{1}$
		This mark is obtained by correctly equating their components for n the example given is
		This mark is obtained by correctly equating their components for \mathbf{a} , the example given is $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		when their equations are set up using $AX = \lambda AN$ and $AX = AM + \mu MB$
		They must have two relevant vectors, along two distinct paths and two distinct parameters. These do not need to be labelled λ and μ .
	M1	For $\frac{3}{2} \lambda = \mu$
		$\frac{1}{4} \frac{1}{4} \frac{1}$
		This mark is obtained by correctly equating their components for b , the example given is $\rightarrow \rightarrow \rightarrow$
		when their equations are set up using $AX = \lambda AN$ and $AX = AM + \mu MB$
		They must have two relevant vectors, along two distinct paths and two distinct
	1 13 54	parameters. These do not need to be labelled λ and μ .
	aaNH	For an attempt to solve their simultaneous equations. There can be errors, but it must be clear
		they are solving simultaneous equations to arrive at a value for λ Or μ or their parameters.
		Dependent on both previous method marks.
	AI	equations:
		$\overrightarrow{A} \xrightarrow{4} \overrightarrow{A} \xrightarrow{3} \overrightarrow{A} \xrightarrow{A} \xrightarrow{A} \overrightarrow{A} \xrightarrow{A} \xrightarrow{A} \xrightarrow{A} \xrightarrow{A} \xrightarrow{A} \xrightarrow{A} \xrightarrow{A} \xrightarrow$
		For $\lambda = \frac{1}{5}$ or $\mu = \frac{1}{5}$ using $AA - \lambda AW$ and $AA - AW + \mu MD$
		For $\lambda = -\frac{4}{5}$ or $\mu = \frac{3}{5}$ using $\overrightarrow{AX} = \lambda \left(-\overrightarrow{AN} \right)$ and $\overrightarrow{AX} = \overrightarrow{AM} + \mu \overrightarrow{MB}$
		For $\lambda = \frac{4}{5}$ or $\mu = -\frac{3}{5}$ using $\overrightarrow{AX} = \lambda \overrightarrow{AN}$ and $\overrightarrow{AX} = \overrightarrow{AM} + \mu \left(-\overrightarrow{MB}\right)$
		For $\lambda = -\frac{4}{5}$ or $\mu = -\frac{3}{5}$ using $\overrightarrow{AX} = \lambda \left(-\overrightarrow{AN} \right)$ and $\overrightarrow{AX} = \overrightarrow{AM} + \mu \left(-\overrightarrow{MB} \right)$
	A1	For $AX: XN = 4:1$

(b)	B1ft	$\rightarrow \rightarrow \rightarrow (\rightarrow)$
ALT		For $AX = AB + BN + \lambda \left(\pm \text{their } AN \right)$ written in terms of a and b
		$\left(\overrightarrow{AX}\right) = \mathbf{b} - \mathbf{a} - \frac{1}{4}\mathbf{b} + \lambda \left(\pm "-\mathbf{a} + \frac{3}{4}\mathbf{b}"\right)$ This may be seen embedded in working.
	M1	For e.g. $\overrightarrow{AX} = \overrightarrow{AM} + \mu \pm \text{their } \overrightarrow{MB}$ written in terms of vectors a and b
		$\left(\overrightarrow{AX} = \right) - \frac{1}{2}\mathbf{a} + \mu \left(\pm " - \frac{1}{2}\mathbf{a} + \mathbf{b}"\right)$ This may be seen embedded in working.
		This must be a distinct route, different to that used already, not travelling along the same line.
	M1	For $-\frac{1}{2}-\frac{1}{2}\mu = -1+\lambda$
		2 2' This mark is obtained by correctly equating their components for a , the example given is
		$\rightarrow \rightarrow $
		when their equations are set up using $AX = AB + BN + \lambda AN$ and $AX = AM + \mu MB$
		They must have two relevant vectors, along two distinct paths and two distinct parameters. These do not need to be labelled λ and μ .
	M1	For $\mu = \frac{3}{2} - \frac{3}{2}\lambda$
		$\begin{array}{c} 4 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
		This mark is obtained by correctly equating their components for b , the example given is $\rightarrow \rightarrow \rightarrow$
		when their equations are set up using $AX = AB + BN + \lambda AN$ and $AX = AM + \mu MB$
		They must have two relevant vectors, along two distinct paths and two distinct parameters. These do not need to be labelled λ and μ .
	ddM1	For an attempt to solve their simultaneous equations. There can be errors, but it must be clear
		they are solving simultaneous equations to arrive at a value for λ or μ
		Dependent on both previous method marks.
	A1	There are a number of different correct answers here, depending on how they've set up their equations:
		For $\lambda = \frac{1}{5}$ or $\mu = \frac{3}{5}$ using $\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{BN} + \lambda \overrightarrow{AN}$ and $\overrightarrow{AX} = \overrightarrow{AM} + \mu \overrightarrow{MB}$
		For $\lambda = -\frac{1}{5}$ or $\mu = \frac{3}{5}$ using $\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{BN} + \lambda \left(-\overrightarrow{AN} \right)$ and $\overrightarrow{AX} = \overrightarrow{AM} + \mu \overrightarrow{MB}$
		For $\lambda = \frac{1}{5}$ or $\mu = -\frac{3}{5}$ using $\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{BN} + \lambda \overrightarrow{AN}$ and $\overrightarrow{AX} = \overrightarrow{AM} + \mu \left(-\overrightarrow{MB}\right)$
		For $\lambda = -\frac{1}{5}$ or $\mu = -\frac{3}{5}$ using
		$\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{BN} + \lambda \left(\overrightarrow{AN} \right) \text{ and } \overrightarrow{AX} = \overrightarrow{AM} + \mu \left(\overrightarrow{MB} \right)$
	A1	For $AX: XN = 4:1$

PMT